
freight-forwarder Documentation
Release 1.0.0

Alex Banna

February 03, 2016

Contents

i

ii

freight-forwarder Documentation, Release 1.0.0

Freight Forwarder is a utility that uses Docker to organize the transportation and distribution of Docker images from
the developer to their application consumers. It allows the developer to focus on features while relying on Freight
Forwarder to be the expert in continuous integration and continuous delivery.

The project website can be reference for the following information. Please report any bugs or feature requests on
Github Issues.

Contents 1

https://github.com/Adapp/freight_forwarder
https://github.com/Adapp/freight_forwarder/issues

freight-forwarder Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Introduction

1.1 General Overview

Freight Forwarder focuses on continuous integration and continuous delivery. At first glance it looks and feels a
lot like Fig/Compose. However, Fig/Compose are very focused on the developers workflow and easing the pain
of multiple container environments. Freight Forwarder can be used to accomplish that same task and much more.
Freight Forwarder focuses on how Docker images are built, tested, pushed, and then deployed. Freight Forwarder
uses an image based CI/CD approach, which means that the images being pushed to the registry are the artifacts
being deployed. Images should be 100% immutable, meaning that no additional changes should need to be made
to the images after being exported. It is expected that containers will be able to start taking traffic or doing work
on initialization. When deploying from one environment to the next, the image from the previous environment will
be pulled from the registry and configuration changes will be made and committed to a new image. Testing will be
ran with the new configuration changes. After the image is verified, it will be pushed up to the registry and tagged
accordingly. That image will then be used when deploying to that environment.

Please review the project integration documentation to start integrating your project with Freight Forwarder.

1.1.1 Configuration File

The configuration file defines your CI/CD pipeline. The definition of the manifest is something developers will have to
define to support their unique workflow. This empowers the developer to define the CI/CD pipeline without interaction
with an operations team.

Configuration file documentation

Warning: The configuration file is required if your planning to use the CLI.

1.1.2 SDK

Freight forwarder is an SDK that interacts with the docker daemon api. The SDK provides and abstraction layer for
CI/CD pipelines as well as the docker api itself. The SDK allows developers to use or extend its current functionality.

SDK documentation

1.1.3 CLI

Freight Forwarder CLI consumes the SDK and provides an easy to use interface for developers, system administrators,
and CI services. The CLI provides all of the functionality required to support a complete CI/CD workflow both locally

3

freight-forwarder Documentation, Release 1.0.0

and remote. If a project has a manifest the cli provides an easy way to override values without having to modify the
manifest itself.

CLI documentation

1.1.4 Injector

Freight Forwarder plays a roll in the injection process. It will pull an Injector Image from a registry then create
and run the container. The Injector shares whatever files that need to be injected with freight forwarder with a shared
volume. Freight Forwarder then copies, chowns, and chmods the files into the application image based on the metadata
provided in the injectors response.

Injector documentation

1.2 Install Freight Forwarder

1.2.1 OSX Install

Requirements:

• Python 2.7

• pip, setuptools, and wheel Python packages.

• libyaml. This can be installed via brew.

Install via pip:

$ pip install freight-forwarder

1.2.2 Ubuntu Install

Ubuntu 14.10:

wget https://bootstrap.pypa.io/get-pip.py sudo python get-pip.py aptitude update && sudo aptitude re-
move libyaml-dev pip install libyaml sudo pip install freight-forwarder freight-forwarder

1.2.3 Arch Linux Install

Arch 4.2.3-1-ARCH:

Because Arch installs python3 as the default python, it is strongly suggested installing pyenv and using that to manage
the local python version.

Set the local version to a freight forwarder compatible version pyenv local 2.7.9 # Install setuptools wget
https://bootstrap.pypa.io/ez_setup.py -O - | python # Install pip deps pip install wheel # Install freight
forwarder pip install freight-forwarder freight-forwarder info

1.2.4 CentOS install

When we install this on CentOS we will need to update these docs.

4 Chapter 1. Introduction

https://bootstrap.pypa.io/get-pip.py
https://bootstrap.pypa.io/ez_setup.py

freight-forwarder Documentation, Release 1.0.0

1.3 Project Integration

1.3.1 Overview

Before being able to use Freight Forwarder there must be a Dockerfile in the root of your project. The Project Dock-
erfile is a standard Dockerfile definition that contains the instructions required to create a container running the appli-
cation source code. The Project Dockerfile must container an entrypoint or cmd to start the application.

If the project has tests a second Dockerfile should be built. This test Dockerfile should reside in the root of the
application tests directory and inherent from the Project Dockerfile. The test Dockerfile should contain instructions to
install test dependencies and have an entrypoint and command that will run the entire applications test suite. The tests
should return a non zero on failure.

If there are dependencies or base image Dockerfiles they can live anywhere in your projects and can be referenced in
any service definition, via the build: path. This allows for more complex projects to be managed with one configuration
file.

Example Project Dockerfile:

FROM ubuntu:14.04
MAINTAINER John Doe "jdoe@nowhere.com"
ENV REFRESHED_AT 2015-5-5

RUN apt-get update
RUN apt-get -y install ruby rake

ADD ./ /path/to/code

ENTRYPOINT ["/usr/bin/rake"]
CMD ["start-app"]

Example Test Dockerfile:

FROM docker_registry/ruby-sanity:latest
MAINTAINER John Doe "jdoe@nowhere.com"
ENV REFRESHED_AT 2014-5-5

RUN gem install --no-rdoc --no-ri rspec ci_reporter_rspec
ADD ./spec /path/to/code/spec
WORKDIR /path/to/code
ENTRYPOINT ["/usr/bin/rake"]
CMD ["spec"]

1.3.2 Namespacing

Freight Forwarder is a bit opinionated about namespaces. The namespace for images map to the pre-existing docker
naming conventions. Team/Project map directly to Dockers repository field.

Example Docker namespace:

repository/name:tag

Example Freight Forwarder namespace:

team/project:tag

1.3. Project Integration 5

freight-forwarder Documentation, Release 1.0.0

1.3.3 Tagging

When tagging your images Freight Forwarder will use the data center and/or environment provided in the configuration
file. Freight Forwarder will prepend those when tagging images.

Example tag:

datacenter-environment-user_defined_tag

Real Life Example:

us-east-1-development-beta

1.3.4 Configuration File

The Configuration File is required and is the what the consumer uses to define their pipeline.

1.3.5 Configuration Injection Integration

If there is interest in integrating with the injector please start by referring to the Injector.

1.3.6 Example Projects

• ‘Docker Example‘_

• ‘CIApi‘_

1.3.7 Jenkins Integration

1.4 Workflows

1.4.1 Overview

The following section will define multiple methods for the building, exporting, and deploying of containers with
freight-forwarder. It will be broken down into examples by individual scenarios to allow for expansion. The scenarios
will assume that standard root keys are in the configuration file are present.

There are some best practices to follow when iterating on the freight-forwarder.yaml configuration file.

1. When defining the Dockerfile, add all source code near the end of the Dockerfile to promote the use of cached
images during development. Use finalized images for configuration injection or build without using cache. This
reduces any potential issues associated with cached images leaving traces of previous builds.

2. Reduce the amount of dependencies that are installed in the final image. As an example, when building a java
or go project, separate the src or build container into a separate container that can provide the go binary or jar
for consuming in another container.

3. Begin the Dockerfile with more RUN directives, but once it is tuned in, combine the statements into one layer.

Example:

6 Chapter 1. Introduction

freight-forwarder Documentation, Release 1.0.0

RUN ls -la
RUN cp -rf /home/example /example
configures this into one layer if possible
RUN ls -la \

&& cp -rf /home/exampe /example

4. Examine other projects. Determine if the image needs to be more dynamic and to be utilized for multiple
definitions or purposes. For example, an elasticsearch node can be defined as a master, data, or client node.
These are configuration changes that can be changed by environment variables. Is this needed to fulfill the
specification or will there exist defined images for different nodes that need to remain complete without a
dynamic nature?

1.4.2 Scenario #1 - Single Service No Dependencies

THe service below requires no dependencies (external services) and can run entirely by itself.

configuration:

api:
build: ./
ports:
- "8000:8000"

env_vars:
- ...

1.4.3 Scenario #2 - Single Service with Cache

The service requires memcach/redis/couchbase as a caching service. When locally deployed or in quality-control, this
will allow for the defined cache container to be started to facilitate the shared cache for the api.

configuration:

api:
build: ./
ports:
- "8000:8000"

env_vars:
- ...

cache:
image: default_registry/repo/image:<tag>
ports:
- "6379:6739"

environments:
development:
local:

hosts: ...
api:

links:
- cache

This would suffice for most local development. But what happens you need to run a container with a defined service
that is in staging or production? You can define the service as a separate dependency that is pre-configured to meet
the specs for your service to operate. Ideally, this should be configured as a Dockerfile inside your project. This

1.4. Workflows 7

freight-forwarder Documentation, Release 1.0.0

provides the additional benefit of providing a uniform development environment for all develops to work in unison on
the project.

export configuration:

staging_hostname:
image: default_registry/repo/image:tag
ports:
- "6379:6379"

environments:
development:
use01:

export:
api:
image: default_registry/repo/baseimage_for_service:tag
links:
- staging_hostname

or
extra_hosts:

- "staging_hostname:ip_address"
- "staging_hostname:ip_address"

or
extra_hosts:

staging_hostname: ip_address

1.4.4 Scenario #3 - Single Service with Multiple Dependencies

This would be an example of a majority of services that required multiple dependencies for a variety of reasons.
For example, it might require a shared cache with a database for relational queries, and an ElasticSearch cluster for
analytics, metrics, logging, etc.

configuration:

esmaster:
...

esdata:
links:
- esmaster

api:
links:
- esdata
- mysql
- cache

nginx:
env_vars:
- "use_ssl=true"

mysql:
...

cache:
...

environments:
development:
quality-control:

nginx:
links:
- api

8 Chapter 1. Introduction

freight-forwarder Documentation, Release 1.0.0

When quality-control or deploy is performed as the action, this will start all associated containers for the service.
Internally, all dependents and dependencies will be analyzed and started in the required order. The list below represents
the order in which containers will be created and started.

1. mysql or cache

2. cache or mysql

3. esmaster

4. esdata

5. api

6. nginx

When attempting to export a service, all dependencies will be started; but no dependents. For example, if attempting
to export the api, mysql, cache, esmaster and then esdata will be started before the api is built from the Dockerfile or
the image is pulled and started.

General Overview A general description of the project. Something to get you acquainted with Freight Forwarder.

Install Freight Forwarder How do I install this thing? Some simple install instructions.

Project Integration How do I integrate Freight Forwarder with my project? Explanation of how to integrate with
Freight Forwarder, expectations, and a few examples.

Workflows Examples of different implementations for a variety of services. Single Service definition, Single Server
with One dependency, Multi-dependency services, etc.

1.4. Workflows 9

freight-forwarder Documentation, Release 1.0.0

10 Chapter 1. Introduction

CHAPTER 2

Basic Usage

2.1 Configuration File

2.1.1 Overview

This is the blueprint that defines an applications CI/CD workflow, container configuration, container host configura-
tion, and its dependencies per environment and data-center. The file should be written in yaml (json is also supported).
The objects in the configuration file have a cascading effect. Meaning that the objects defined deepest in the object
structure take precedent over previously defined values. This allows for common configuration values to be shared as
well as allowing the flexibility to override values per individual operation.

Warning: Configuration injection isn’t included in this configuration file.

2.1.2 Terminology Explanation

Definitions:

11

freight-forwarder Documentation, Release 1.0.0

freight-forwarder.yml

Handles the organization of application services,
environments and data-centers.

hosts

A server physical/virtual server that has the docker
daemon running. The daemon must be configured
to communicate via tcp.

service

Multiple services are defined to make a project. A
service could be an api, proxy, db, etc.

environments

An object that is used to define where/how containers
and images are
being deployed, exported, and tested for each
environment.

data centers

An object that is used to define where/how containers
and images are
being deployed, exported, and tested for each data
center.

registry

The docker registry where images will be pushed.

2.1.3 Root Level Properties

All of the properties at the root of the configuration file either correlate to a service, project metadata, or environments.

12 Chapter 2. Basic Usage

freight-forwarder Documentation, Release 1.0.0

Name Required Type Description
team True string

Name of the development
team.

project True string

The project that is being
worked on.

repository True string

The projects git repo.

services True object

Refer to Service Properties

registries False object

Refer to Registries
Properties

environments True object

Refer to Environments
properties

1 ---
2 # team name
3 team: "itops"
4

5 # current project
6 project: "cia"
7

8 # git repo
9 repository: "git@github.com:Adapp/cia.git"

10

11 # Service definition
12 api:
13 build: "./"
14 test: "./tests/"
15 ports:
16 - "8000:8000"
17

18 # environments object is collection of environments and data centers
19 environments:
20

21 # development environment
22 development:
23

24 # local datacenter
25 local:
26

27 # sea1 data center
28 sea1:
29

2.1. Configuration File 13

freight-forwarder Documentation, Release 1.0.0

30 # staging environment
31 staging:
32

33 # production environment
34 production:

2.1.4 Service Properties

Each service object is a component that defines a specific service of a project. An example would be an api or
database. Services can be built from a Dockerfile or pulled from an image in a docker registry. The container and host
configuration can be modified on a per service bases.

14 Chapter 2. Basic Usage

freight-forwarder Documentation, Release 1.0.0

Name Required Type Description
build one of string

Path to the service
Dockerfile.

test False string

Path to a test Dockerfile
that should be used to
verify
images before pushing
them to a docker registry.

image one of string

The name of the docker
image in which the service
depends
on. If its being pulled from
a registry the fqdn must be
provided. Example:
registry/itops/cia:latest.
If the image property is
spectified it will always
take
precedent over the build
property.
If a service object has both
an image and build
specified
the image will exclusively
be used.

export_to False string

Registry alias where
images will be push. This
will be
set to the default value if
nothing is provided. The
alias
is defined in Registries
Properties

Container Config any of

Refer to Container Config
Properties

1 ---
2 # service alias.
3 couchdb:
4

5 # Docker image to use for service.

2.1. Configuration File 15

freight-forwarder Documentation, Release 1.0.0

6 image: "registry_alias/itops/cia-couchdb:local-development-latest"
7

8 # Path to Dockerfile.
9 build: ./docker/couchdb/Dockerfile

10

11 # Synonyms with -d from the docker cli.
12 detach: true
13

14 # Synonyms with -p from the docker cli.
15 ports:
16 - "6984:6984"
17 - "5984:5984"

2.1.5 Registries Properties

The registries object is a grouping of docker registries that images will be pulled from or pushed to. The alias of each
registry can be used in any image definition image: docker_hub/library/centos:6.6. By default docker_hub is provided
for all users. The default property will be set to docker_hub unless overridden with any of the defined registries.

Name Required Type Description
registry (alias) True object

Refer to Registry
Properties

default False object

Refer to Registry
Properties

1 # define
2 registries:
3 # define development registry
4 tune_development: &default_registry
5 address: "https://example_docker_registry"
6 verify: false
7

8 # define production registry
9 tune_production:

10 address: "https://o-pregister-sea1.ops.tune.com"
11 ssl_cert_path: /path/to/certs
12 verify: false
13

14 # define auth for production registry
15 auth:
16 type: "registry_rubber"
17 address: "https://o-regrubber-sea1.ops.tune.com"
18 ssl_cert_path: /path/to/certs
19 verify: false
20

21 # define default registry. If this isn't defined default will be docker_hub.
22 default: *default_registry

16 Chapter 2. Basic Usage

freight-forwarder Documentation, Release 1.0.0

2.1.6 Registry Properties

The docker registry that will be used to pull or push validated docker images.

Name Required Type Description
address True string

Address of docker host,
must provide http scheme.
Example:
https://your_dev_box.office.priv:2376

ssl_cert_path False string

Full system path to client
certs.
Example:
/etc/docker/certs/client/dev/

verify False bool

Validate certificate
authority?

auth False object

Refer to Registry Auth
Properties

1 ---
2 registries:
3 # registry definition
4 default:
5 address: "https://docker-dev.ops.tune.com"
6 verify: false

2.1.7 Registry Auth Properties

These are properties required for authentication with a registry. Currently basic and registry_rubber auth are support.
Dynamic auth uses Registry Rubber to support nonce like basic auth credentials. Please refer to Registry Rubber
documentation for a deeper understanding of the service.

2.1. Configuration File 17

https://your_dev_box.office.priv:2376
https://github.com/TuneOSS/Registry-Rubber
https://github.com/TuneOSS/Registry-Rubber

freight-forwarder Documentation, Release 1.0.0

Name Required Type Description
address True string

Address of docker host,
must provide http scheme.
Example:
https://your_dev_box.office.priv:2376

ssl_cert_path False string

Full system path to client
certs.
Example:
/etc/docker/certs/client/dev/

verify False bool

Validate certificate
authority?

type False string

Type of auth. Currently
supports basic and
registry_rubber.
Will default to basic.

1 ---
2 registries:
3 # registry definition
4 default:
5 address: "https://example-docker-registry.com"
6 ssl_cert_path: /path/to/certs
7 verify: false
8

9 # optional: required if using registry rubber.
10 auth:
11 type: "registry_rubber"
12 address: "https://o-regrubber-sea1.ops.tune.com"
13 ssl_cert_path: "/etc/docker/certs/registry/build"
14 verify: false

2.1.8 Environments properties

The Environments object is a grouping of instructions and configuration values that define the behavior for a CI/CD
pipeline based on environment and data center. The environments and data centers are both user defined.

Warning: If using CIA: The environments and data centers need to match what is defined in CIA. Freight
Forwarder will pass these values to the injector to obtain the correct configuration data.

18 Chapter 2. Basic Usage

https://your_dev_box.office.priv:2376

freight-forwarder Documentation, Release 1.0.0

Name Required Type Description
environment True object

Refer to Environment
Properties valid
environments are
ci, dev, development, test,
testing, perf, performance,
stage, staging, integration,
prod, production.

service False object

Refer to Service Properties

host False object

Refer to Hosts Properties

1 ---
2 # environments object definition
3 environments:
4 # define a host as a variable to use later
5 boot2docker: &boot2docker
6 - address: "https://192.168.99.100:2376"
7 ssl_cert_path: /path/to/certs
8 verify: false
9

10 # override api service APP_ENV environment variable.
11 api:
12 env_vars:
13 - "APP_ENV=development"
14

15 # define development environment
16 development:
17

18 # define local datacenter for development
19 local:
20 hosts:
21 default: *boot2docker
22

23 # define staging environment
24 staging:
25

26 # define staging datacenter in sea1
27 sea1: {}
28

29 # define production environment
30 production:
31

32 # define us-east-01 for production datacenter.
33 us-east-01: {}

2.1. Configuration File 19

freight-forwarder Documentation, Release 1.0.0

2.1.9 Environment Properties

The environment of the application. An application can and one or many environments. Valid environments are ci,
dev, development, test, testing, perf, performance, stage, staging, integration, prod, production.

Name Required Type Description
hosts False object

Refer to Hosts Properties if
not defined freight
forwarder will use
the docker environment
variables.

data centers True object

Refer to Data Center
Properties

services False object

Refer to Service Properties

1 ---
2 environments:
3

4 # define development environment
5 development:
6

7 # define local datacenter.
8 local:
9

10 # define development local hosts.
11 hosts:
12

13 # define default hosts
14 default:
15 - address: "https://192.168.99.100:2376"
16 ssl_cert_path: /path/to/certs
17 verify: false
18

19 # override api service APP_ENV environment variable for development local.
20 api:
21 env_vars:
22 - "APP_ENV=development"
23

24 # define production environment
25 production:
26

27 # define production hosts
28 hosts:
29 # define hosts specificly for the api service.
30 api:
31 - address: "https://192.168.99.102:2376"
32 ssl_cert_path: /path/to/certs
33 verify: false
34

35 # define default hosts

20 Chapter 2. Basic Usage

freight-forwarder Documentation, Release 1.0.0

36 default:
37 - address: "https://192.168.99.101:2376"
38 ssl_cert_path: /path/to/certs
39 verify: false
40

41 # override api service APP_ENV environment variable for production.
42 api:
43 env_vars:
44 - "APP_ENV=production"

2.1.10 Data Center Properties

Each environment can have multiple data center objects. Some examples of data centers: local, sea1, use-east-01, and
us-west-02

Name Required Type Description
hosts False object

Refer to Hosts Properties if
not defined freight
forwarder will use
the docker environment
variables.

service False object

Refer to Service Properties

deploy one of object

Refer to Deploy Properties

export one of object

Refer to Export Properties

quality_control one of object

Refer to Quality Control
Properties

1 ---
2 environments:
3

4 # define development environment.
5 development:
6

7 # define local datacenter.
8 local:
9

10 # define hosts for development local.
11 hosts:
12

13 # define default hosts.
14 default:
15 - address: "https://192.168.99.100:2376"

2.1. Configuration File 21

freight-forwarder Documentation, Release 1.0.0

16 sslCertPath: "/Users/alexb/.docker/machine/machines/ff01-dev"
17 verify: false
18

19 # define host to use during export
20 export:
21 - address: "https://your-ci-server.sea1.office.priv:2376"
22 sslCertPath: "/path/to/your/certs/"
23 verify: false
24

25 # define deploy command orderides
26 deploy:
27

28 # override ui service properties.
29 ui:
30 image: registry_alias/itops/cia-ui:local-development-latest
31 volumes:
32 - /var/tune/cia-ui/public/
33

34 # override static-assets service properties.
35 static-assets:
36 image: registry_alias/itops/cia-static-assets:local-development-latest
37 volumes:
38 - /static/
39 volumes_from: []
40

41 export:
42 ui:
43 export_to: registry_alias
44

45 static-assets:
46 export_to: registry_alias

2.1.11 Deploy Properties

The deploy object allows development teams to define unique deployment behavior for specific service, environment,
and data center.

Name Required Type Description
service True object

Refer to Service Properties

1 ---
2 registries:
3

4 registry_alias: ®istry_alias
5 address: https://docker-registry-example.com
6 ssl_cert_path: /path/to/certs
7 verify: false
8

9 default: *registry_alias
10

11 environments:
12 production:
13 # define datacenter
14 us-west-02:
15

22 Chapter 2. Basic Usage

freight-forwarder Documentation, Release 1.0.0

16 # define deploy action
17 deploy:
18

19 # deployment overrides for static-assets
20 static-assets:
21 image: registry_alias/itops/cia-static-assets:latest
22 volumes:
23 - /static/
24 volumes_from: []
25 restart_policy: null
26

27 # deployment overrides for api
28 api:
29 image: registry_alias/itops/cia-api:o-ciapi03-2b-production-latest
30

31 # deployment overrides for nginx
32 nginx:
33 image: registry_alias/itops/cia-nginx:us-west-02-production-latest

2.1.12 Export Properties

The export object allows development teams to define unique artifact creation behavior for a specific service, environ-
ment, and data center. Export is the only action that allows you to have a specific unique hosts definition (this is a
good place for a jenkins or build host).

Note: To remove Freight Forwarders tagging scheme pass –no-tagging-scheme to the cli export command.

Warning: When exporting images Freight Forwarder will use the service definition in deploy for any depen-
dencies/dependents. In addition, if a command is provided in the config for the service being exported Freight
Forwarder assumes any changes made should be committed into the image.

Name Required Type Description
service True object

Refer to Service Properties

tags False array[string]

A list of tags that should be
applied to the image before
exporting.

1 ---
2 # environments
3 environments:
4 production:
5 # datacenter definition
6 us-west-02:
7 # hosts for us-west-02
8 hosts:
9

10 # default hosts
11 default:

2.1. Configuration File 23

freight-forwarder Documentation, Release 1.0.0

12 - address: "https://dev_hostname:2376"
13 ssl_cert_path: /path/to/certs
14 verify: false
15

16 # host specific to the export action. will default to hosts defined in
17 # default if not provided.
18 export:
19 - address: "https://127.0.0.1:2376"
20 ssl_cert_path: /path/to/certs
21 verify: false
22

23 # overrides for the export action.
24 export:
25

26 # api service export specific overrides.
27 api:
28 env_vars:
29 - APP_ENV=production
30

31 # specify what registry to export to.
32 export_to: registry_alias

2.1.13 Quality Control Properties

The quality control object allows developers a way to test containers, images, and workflows locally before deploying
or exporting.

Name Required Type Description
service True object

Refer to Service Properties

1 ---
2 # quality control action.
3 quality_control:
4

5 # couchdb service overrides.
6 couchdb:
7 log_config:
8 type: json-file
9 config: {}

10

11 ports:
12 - "6984:6984"
13

14 # api service overrides.
15 api:
16 links: []
17 env_vars:
18 - APP_ENV=development

2.1.14 Hosts Properties

The hosts object is a collection of docker hosts in which Freight Forwarder will interact with when deploying, export-
ing, or testing. Each service can have a collection of its own hosts but will default to the defaults definition or the

24 Chapter 2. Basic Usage

freight-forwarder Documentation, Release 1.0.0

standard Docker environment variables: DOCKER_HOST, DOCKER_TLS_VERIFY, DOCKER_CERT_PATH.

Name Required Type Description
service_name (alias) one of list[Host Properties]

List of Host Properties

export one of list[Host Properties]

List with as single element
of Host Properties

default one of list[Host Properties]

List of Host Properties

1 ---
2 # development environment definition.
3 development:
4 # development environment local datacenter definition.
5 local:
6

7 # hosts definition.
8 hosts:
9

10 # default hosts.
11 default:
12 - address: "https://192.168.99.100:2376"
13 ssl_cert_path: /path/to/certs
14 verify: false
15 - address: "https://192.168.99.110:2376"
16 ssl_cert_path: /path/to/certs
17 verify: false

2.1.15 Host Properties

The host object is metadata pertaining to docker hosts. If using ssl certs they must be the host where Freight Forwarder
is run and be able to be read by the user running the commands.

2.1. Configuration File 25

freight-forwarder Documentation, Release 1.0.0

Name Required Type Description
address True string

Address of docker host,
must provide http scheme.
Example:
https://your_dev_box.office.priv:2376

ssl_cert_path False string

Full system path to client
certs.
Example:
/etc/docker/certs/client/dev/

verify False bool

Validate certificate
authority?

1 ---
2 # development environment definition.
3 development:
4 # development environment local datacenter definition.
5 local:
6

7 # hosts definition.
8 hosts:
9

10 # default hosts.
11 default:
12 - address: "https://192.168.99.100:2376"
13 ssl_cert_path: /path/to/certs
14 verify: false
15

16 # host to build and export from.
17 export:
18 - address: "https://192.168.99.120:2376"
19 ssl_cert_path: /path/to/certs
20 verify: false
21

22 # specific hosts for the api service.
23 api:
24 - address: "https://192.168.99.110:2376"
25 ssl_cert_path: /path/to/certs
26 verify: false

2.1.16 Host Config Properties

Host configuration properties can be included as a part of the the service definition. This allows for greater control
when configuring a container for specific requirements to operate. It is suggested that a root level definition of a service
be minimalistic compared to how it should be deployed in a specific environment or data-center.

Refer to Docker Docs for the full list of of potential properties.

26 Chapter 2. Basic Usage

https://your_dev_box.office.priv:2376
https://docs.docker.com/

freight-forwarder Documentation, Release 1.0.0

Name Required Type Default Value Description
binds False list [’/dev/log:/dev/log:rw’]

Default value applied
to all containers. This
allows for
inherit use of /dev/log
for logging by the
container

cap_add False string None

Defined system
capabilities to add to
the container from the
host. Refer to
http://linux.die.net/man/7/capabilities
for a
full list of capabilities

cap_drop False string None

Defined system
capabilities to remove
from the container
from the
host. Refer to
http://linux.die.net/man/7/capabilities
for a
full list of capabilities

devices False list None

Device to add to the
container from the
host
Format of devices
should match as
shown below.
Permissions
need to be set
appropriately.

“/path/to/dev:/path/inside/container:rwm’

links False list []

Add link to another
container

lxc_conf False list []

Add custom lxc
options

readonly_root_fs False boolean False

Read-only root
filesystem

readonly_rootfs
security_opt False list None

Security Options

memory False int 0

Memory limit

memory_swap False int 0

Total memory
(memory + swap), -1
to disable swap

cpu_shares False int 0

CPU shares (relative
weight)

port_bindings False list/dict {}

Map the exposed
ports from host to the
container

ports
publish_all_ports False boolean False

All exposed ports are
associated with an
ephemeral
port

privileged False boolean False

Give extended
privileges to this
container

dns False None

Set custom DNS
servers

dns_search False None

Set custom DNS
search domains

extra_hosts False None

Add additional hosts
as needed to the
container

network_mode False string bridge

Network
configuration for
container
environment

volumes_from False list []

Mount volumes from
the specified
container(s)

cgroup_parent False string ‘’

Optional parent
cgroup for the
container

log_config False dict json-file

Defined logging
configuration for the
container.
Reference the
logging-driver for
appropriate
docker engine version
Default Value:
{

“type”:
json-file,
“config”: {

“max-
files”:
“2”,
“max-
size”:
“100m”
}

}

ulimits False dict None

Defined user process
resource limits for the
containers run time
environment

restart_policy False dict {}

This defines the
behavior of the
container
on failure

2.1. Configuration File 27

http://linux.die.net/man/7/capabilities
http://linux.die.net/man/7/capabilities

freight-forwarder Documentation, Release 1.0.0

2.1.17 Container Config Properties

Container config properties are container configuration settings that can be changed by the developer to meet the
container run time requirements. These properties can be set at any level but the furthest in the object chain will take
presidents. Please refer to Docker Docs for a full list of properties.

28 Chapter 2. Basic Usage

https://docs.docker.com/

freight-forwarder Documentation, Release 1.0.0

Name Required Type Default Value Description
attach_stderr False boolean False

Attach to stderr

attach_stdin False boolean False

Attach to stdin and
pass input into
Container

attach_stdout False boolean False

Attach to stdout

cmd False list None

Override the
command directive on
the container

command
domain_name False string ‘’

Domain name for the
container

domainname
entry_point False list ‘’

Defined entrypoint for
the container

entrypoint
env False list ‘’

Defined environment
variables for the
container

env_vars
exposed_ports False list ‘’

Exposes port from the
container. This
allows a container
without an ‘EXPOSE’
directive to make
it available to the host

hostname False string ‘’

hostname of the
container

image False string ‘’

defined image for the
container

labels False dict|none {}

labels to be appended
to the container

network_disabled False boolean False

Disable network for
the container

open_stdin False boolean False

This defined multiple
values:
stdin_once = True
attach_stdin = True
detach = False

stdin_once False boolean False

Opens stdin initially
and closes once data
transfer has been
completed

tty False boolean False

Open interactive
pseudo tty

user False string ‘’

Allows the developer
to set a default
user to run the first
process with the

volumes False list None

List of volumes
exposed by the
container

working_dir False string ‘’

Starting work
directory for the
container

detach False boolean False

Default Values
applied:
attach_stdout = False
attach_stderr = False
stdin_once = False
attach_stdin = False

2.1. Configuration File 29

freight-forwarder Documentation, Release 1.0.0

2.2 CLI

2.2.1 Overview

Freight Forwarder CLI consumes the SDK and makes requests to a docker registry api and the docker client api.
The CLI must be run in the same location as the configuration file (freight-forwarder.yml). Additional information
regarding the configuration files can be found Config documentation.

For full usage information:

freight-forwarder --help

Note: Example Service Definition

1 api:
2 build: "./"
3 test: "./tests/"
4 ports:
5 - "8000:8000"
6 links:
7 - db

2.2.2 Info

class freight_forwarder.cli.info.InfoCommand(args)
Display metadata about Freight Forwarder and Python environment.

Options

• -h, --help (info) - Show the help message.

Example:

$ freight-forwarder info
Freight Forwarder: 1.0.0
docker-py: 1.3.1
Docker Api: 1.19
CPython version: 2.7.10
elapsed: 0 seconds

Returns exit_code

Return type int

2.2.3 Deploy

class freight_forwarder.cli.deploy.DeployCommand(args)
The deploy command pulls an image from a Docker registry, stops the previous running containers, creates and
starts new containers, and cleans up the old containers and images on a docker host. If the new container fails
to start, the previous container is restarted and the most recently created containers and image are removed.

Options

• -h, --help (info) - Show the help message

30 Chapter 2. Basic Usage

freight-forwarder Documentation, Release 1.0.0

• --data-center (required) - The data center to deploy. example: sea1, sea3, or us-east-
1

• --environment (required) - The environment to deploy. example: development, test,
or production

• --service (required) - The Service that will be built and exported.

• --tag (optional) - The tag of a specific image to pull from a registry. example: sea3-
development-latest

• -e, --env (optional) - list of environment variables to create on the container will over-
ride existing. example: MYSQL_HOST=172.17.0.4

Returns exit_code

Return type integer

2.2.4 Export

class freight_forwarder.cli.export.ExportCommand(args)
The export command builds a “service” Docker image and pushes the image to a Docker registry. A service is
a defined in the configuration file.

The export command requires a Registry to be defined in the configuration file or it will default to Docker Hub,
private registries are supported.

The export command by default will build the container and its defined dependencies. This will start the targeted
service container after it’s dependencies have been satisfied. If the container is successfully started it will push
the image to the repository.

If test is set to true a test Dockerfile is required and should be defined in the configuration file. The test Dockerfile
will be built and ran after the “service” Dockerfile. If the test Dockerfile fails the application will exit 1 without
pushing the image to the registry.

The configs flag requires integration with CIA. For more information about CIA please to the documentation.

When the export command is executed with --no-validation it will perform the following actions.

1.Build the defined Dockerfile or pull the image for the service.

2.Inject a configuration if defined with credentials.

3.Push the Image to the defined destination registry or the defined default, if no default is defined, it will
attempt to push the image to Docker Hub.

To implement with a Continuous Integration solution (i.e. Jenkins, Travis, etc); please refer to below and use
the -y option to not prompt for confirmation.

Options

• -h, --help (info) - Show the help message.

• --data-center (required) - The data center to deploy. example: us-east-02, dal3, or
us-east-01.

• --environment (required) - The environment to deploy. example: development, test,
or production.

• --service (required) - The Service that will be built and exported.

• --clean (optional) - Clean up anything that was created during current command execu-
tion.

2.2. CLI 31

freight-forwarder Documentation, Release 1.0.0

• --attach (optional) - Attach to the service containers output.

• --configs (optional) - Inject configuration files. Requires CIA integration.

• --tag (optional) - Metadata to tag Docker images with.

• --no-tagging-scheme (optional) - Turn off freight forwarders tagging scheme.

• --test (optional) - Build and run test Dockerfile for validation before pushing image.

• --use-cache (optional) - Allows use of cache when building images defaults to false.

• --no-validation (optional) - The image will be built, NOT started and pushed to the
registry.

• -y (optional) - Disables the interactive confirmation with --no-validation.

Returns exit_code

Return type integer

2.2.5 Offload

class freight_forwarder.cli.offload.OffloadCommand(args)
The offload Command removes all containers and images related to the service provided.

Options

• -h, --help (info) - Show the help message.

• --data-center (required) - The data center to deploy. example: sea1, sea3, or us-east-
1

• --environment (required) - The environment to deploy. example: development, test,
or production

• --service (required) - This service in which all containers and images will be removed.

Returns exit_code

Return type integer

2.2.6 Quality Control

class freight_forwarder.cli.quality_control.QualityControlCommand(args)
The quality-control command allows development teams to validate freight forwarder work flows without actu-
ally deploying or exporting.

Options

• -h, --help (info) - Show the help message

• --data-center (required) - The data center to deploy. example: sea1, sea3, or us-east-
1.

• --environment (required) - The environment to deploy. example: development, test,
or production.

• --service (required) - The service that will be used for testing.

• --attach (optional) - Attach to the service containers output.

• --clean (optional) - Remove all images and containers after run.

32 Chapter 2. Basic Usage

freight-forwarder Documentation, Release 1.0.0

• -e, --env (optional) - list of environment variables to create on the container will over-
ride existing. example: MYSQL_HOST=172.17.0.4

• --configs (optional) - Inject configuration files. Requires CIA integration.

• --test (optional) - Run test Dockerfile must be provided in the configuration file.

• --use-cache (optional) - Allows use of cache when building images defaults to false.

Returns exit_code

Return type integer

2.2.7 Test

class freight_forwarder.cli.test.TestCommand(args)
The test command allows developers to build and run their test docker file without interfering with their current
running application containers. This command is designed to be ran periodically throughout a developers normal
development cycle. Its a nice encapsulated way to run a projects test suite.

Warning: This command requires your service definition to have a test Dockerfile.

Options

• -h, --help (info) - Show the help message

• --data-center (required) - The data center to deploy. example: sea1, sea3, or us-east-
1

• --environment (required) - The environment to deploy. example: development, test,
or production

• --service (required) - The service that will be used for testing.

• --configs (optional) - Inject configuration files. Requires CIA integration.

Returns exit_code

Return type integer

2.2.8 Marshalling Yard

class freight_forwarder.cli.marshaling_yard.MarshalingYardCommand(args)
MarshalingYard interacts with a docker registry and provides information concerning the images and tags.

•--alias (optional) - The registry alias defined in freight-forwarder config file. defaults: ‘de-
fault’.

One of the options is required

•search Searches defined registry with keyword

•tags Returns tag associated with value provided from the specified registry

Returns exit_code

Return type integer

Configuration File Configuration file for projects.

CLI CLI command index.

2.2. CLI 33

freight-forwarder Documentation, Release 1.0.0

34 Chapter 2. Basic Usage

CHAPTER 3

Extending Freight Forwarder

3.1 Injector

3.1.1 Overview

The injector was built and designed to create configuration files and share them with freight forwarder during the
CI process. We use the injector to make api calls to CIA an internal tool that we use to manage configuration files.
The injector uses CIA’s response and writes configuration files to disk, shares them with freight forwarder using a
shared volume, and returns Injector Response to provide metadata about the configuration files. This doesn’t have to
be limited to configuration files and can be extended by creating a new injector container so long as it follows a few
rules.

Note: If injection is required during export set –configs=true. This will be changed to –inject in the future.

3.1.2 Workflow

• Freight Forwarder pulls the injector image defined in environment variable INJECTOR_IMAGE. The value
must be in the following format repository/namespace:tag.

• Freight Forwarder passes Environment Variables to the injector container when its created.

• Freight Forwarder then runs the injector.

• Freight Forwarder uses the data returned from the injector to create intermediate containers based on the appli-
cation image.

• Freight Forwarder than commits the changes to the application image.

3.1.3 Creating Injector Images

When creating an injector image the container created from the image is required to produce something to inject into
the the application image. Freight Forwarder provides Environment Variables to the injector container as a way to
identify what resources it should create. After the injector creates the required resources it must return a valid Injector
Response. Freight Forwarder will then use that response to commit the required resources into the application image.

After the injector image has been created and tested the end user will need to provide the INJECTOR_IMAGE envi-
ronment variable with a string value in the following format: repository/namespace:tag. In addition, to the
environment variable the end user will have to set –configs=true. This will tell Freight Forwarder to use the provided

35

freight-forwarder Documentation, Release 1.0.0

image to add a layer to the application image after it has been built or pulled from a docker registry. A specific registry
can be defined in the configuration file with the alias of “injector”. If the injector alias isn’t defined the default registry
will be used.

3.1.4 Environment Variables

These environment variables will be passed to the injector container every run. They will change based on the Freight
Forwarder configuration file, user provided environment variables, and command line options.

Name Required Type Description
INJECTOR_CLIENT_ID False string

OAuth client id, this must
be provided by the user.

INJECTOR_CLIENT_SECRETFalse string

OAuth secret id, this must
be provided by the user.

ENVIRONMENT True string

Current environment being
worked on. example:
development
This maps to what is being
passed to –environment
option.

DATACENTER True string

Current data center being
worked on. example:
us-west-02
This maps to what is being
passed to –data-center
option.

PROJECT True string

Current project being
worked on. example: itops
This maps to what is in the
users configuration file.

SERVICE True string

Current service being
worked on. example: app
This maps to what is being
passed to –service option.

36 Chapter 3. Extending Freight Forwarder

freight-forwarder Documentation, Release 1.0.0

3.1.5 Injector Response

The injector container must return a list of objects each with the following properties formatted in json. This metadata
will be used to copy files and configure them correctly for the application image.

Name Required Type Description
name True string

Name of the file being
written.

path True string

Application container Path
in which to write file.

config_path True string

Path to find file inside of
the injector container.

user True string

File belongs to this user,
user must already exist.

group True string

File belongs to the this
group, group must already
exist.

chmod True int or string

File permissions.

checksum True string

MD5 sum of file.

notifications False object

Refer to Notifications
Object

1 [
2 {
3 "name": "myconf.json",
4 "path": "/opt/docker-example/conf",
5 "config_path": "/configs/myconf.json",
6 "user": "root",
7 "group": "root",
8 "chmod": 755,
9 "checksum": "5cdfd05adb519372bd908eb5aaa1a203",

10 "notifications": {
11 "info": [
12 {
13 "type": "configs",

3.1. Injector 37

freight-forwarder Documentation, Release 1.0.0

14 "details": "Template has not changed. Returning previous config."
15 }
16]
17 }
18 }
19]

3.1.6 Notifications Object

The notifications object allows the injector to pass a message to the user or raise an exception if it fails to complete a
task. If an error is provided in the notifications object freight forwarder will raise the error, this will result in a failed
run.

Name Required Type Description
info False list

Send a message to the user
informing them of
something. list of Message
Object

warnings False list

Warn the user about a
potential issue. list of
Message Object

errors False list

Raise an error and
terminate current freight
forwarder run.
list of Message Object

1 {
2 "notifications": {
3 "info": [],
4 "warnings": [],
5 "errors": []
6 }
7 }

Warning: If an errors notification is provided freight forwarder will terminate the current run.

38 Chapter 3. Extending Freight Forwarder

freight-forwarder Documentation, Release 1.0.0

3.1.7 Message Object

Name Required Type Description
type True string

Type of message.

details True string

The message to deploy to
the end user.

1 {
2 "type": "configs",
3 "details": "Template has not changed. Returning previous config."
4 }

3.2 SDK

3.2.1 Overview

Coming Soon!

Injector Describes how to implement an injector.

SDK SDK Documentation.

3.3 Contributing

3.3.1 Development Environment

Docker is required follow these install instructions.

OSX:

install home brew this will also install Xcode command line tool. Follow all instructions given during install
$ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)”

update brew
$ brew update

install pyenv
$ brew install pyenv

You may need to manually set PYENV_ROOT, open a new terminal and see if it
was set by the install proces:

$ echo $PYENV_ROOT

Setting Manually
#
If your PYENV_ROOT isn't set, you can use either $HOME/.pyenv or the
homebrew pyenv directory, /usr/local/opt/pyenv. Put

3.2. SDK 39

https://docs.docker.com/installation/

freight-forwarder Documentation, Release 1.0.0

#
export PYENV_ROOT=/usr/local/opt/pyenv
#
-or-
#
export PYENV_ROOT="$HOME"/.pyenv
#
in your .bashrc or .bash_profile, or whatever your appropriate dotfile is.
#

#
Setting with oh-my-zsh
#
You can just use the pyenv plugin. Open your .zshrc and make sure that
this line:
plugins=(git rvm osx pyenv)
contains pyenv. Yours may have more or fewer plugins.
#
If you just activated the pyenv plugin, you need to open a new shell to
make sure it loads.

install libyaml
$ brew install libyaml

install a few plugins for pyenv
$ mkdir -p $PYENV_ROOT/plugins
$ git clone "git://github.com/yyuu/pyenv-pip-rehash.git" "${PYENV_ROOT}/plugins/pyenv-pip-rehash"
$ git clone "git://github.com/yyuu/pyenv-virtualenv.git" "${PYENV_ROOT}/plugins/pyenv-virtualenv"
$ git clone "git://github.com/yyuu/pyenv-which-ext.git" "${PYENV_ROOT}/plugins/pyenv-which-ext"

Load pyenv-virtualenv when shells are created:
#
To make sure that both of your pugins are loading, these lines should be
in one of your dotfiles.
#
eval "$(pyenv init -)"
eval "$(pyenv virtualenv-init -)"

Now that it will load automatically, activate the plugin for this shell:
$ eval "$(pyenv virtualenv-init -)"

install a specific version
$ pyenv install 2.7.10

create a virtual env
$ pyenv virtualenv 2.7.10 freight-forwarder

list all of your virtual environments
$ pyenv virtualenvs

activate your environment
$ pyenv activate freight-forwarder

clone repo
$ git clone git@github.com:Adapp/freight_forwarder.git

install requirements
$ pip install -r requirements.txt

40 Chapter 3. Extending Freight Forwarder

freight-forwarder Documentation, Release 1.0.0

3.3.2 Style Guidelines

Coming soon!

3.3.3 Release Steps

• version++; The verson can be found freight_forwarder/const.py

• Update change log.

• Git tag the version

• $ python ./setup.py bdist_wheel

• Upload to pypi.

3.3.4 Build Documentation

Docker:

$ pip install freight-forwarder -i http://internal.pip.server/pypi/ --trusted-host internal.pip.server
$ freight-forwarder quality-control --environment development --data-center local --service proxy

After the containers start you can find the documentation at: localhost:8080/ff/

Make:

$ cd docs/
$ pip install -r requirements.txt
$ make html

The html can found here: ./docs/_build/

3.4 FAQ

3.4.1 Can I use any project/team name with Freight Forwarder?

Yes. Just set it in the manifest/CLI and the image will be tagged and stored appropriately.

3.4.2 How do I find out where the keys to my various ‘containerShips’ are?

SSL certs are required for connecting to Docker daemons. Even if you’re running Docker locally, you’ll need to enable
SSL support to use that daemon.

3.4. FAQ 41

freight-forwarder Documentation, Release 1.0.0

42 Chapter 3. Extending Freight Forwarder

Index

D
DeployCommand (class in freight_forwarder.cli.deploy),

30

E
ExportCommand (class in freight_forwarder.cli.export),

31

I
InfoCommand (class in freight_forwarder.cli.info), 30

M
MarshalingYardCommand (class in

freight_forwarder.cli.marshaling_yard), 33

O
OffloadCommand (class in freight_forwarder.cli.offload),

32

Q
QualityControlCommand (class in

freight_forwarder.cli.quality_control), 32

T
TestCommand (class in freight_forwarder.cli.test), 33

43

